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On Stable Simulation of Random Functions over

Fixed Boundaries using Biased Beta Distributions 1

Oscar G. Gonzalez 2

Straight standard classical geostatistics based on symmetric, unbounded
Gaussian distributions, can fail to model physical processes whose outcomes
must be restricted to a finite interval (a, b) ⊂ ℜ. This paper discusses
a numerically stable, approximated approach to simulate non stationary

random functions over finite supports.
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The Problem

Consider a non stationary random function (Journel, 1978)
T = T (x, y, z) : ℜ3 → (a, b) ⊂ ℜ with an unknown probability density

function fT (x,y,z)(t), positive over a known given support
−∞ < a(x, y, z) < t < b(x, y, z) < ∞, and zero elsewhere, with:

µt = E(T ) = fE(x, y, z) : ℜ3 → (a, b) ⊂ ℜ (1)

σ2
t = Var(T ) = fV (x, y, z) : ℜ3 → ℜ+ (2)

being known functions, and an unknown covariance function:

Cov
(
Pi(xi, yi, zi), Pj(xj , yj , zj)

)
: ℜ3 ×ℜ3 → ℜ (3)

It is needed to obtain approximated, numerically stable stochastic

simulations of T . The method will be useful to simulate conditional

distributions over a geostatistical framework, and to simulate functions of
random functions.
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The Beta Distribution

Suppose that the Beta distribution is a good approximation for the
unknown density fT (t), for which it is known E(T ) = µt = fE(x, y, z),
Var(T ) = σ2

t = fV (x, y, z), and the boundaries a = a(x, y, z), and
b = b(x, y, z)

The Beta density is:

fT (t) =
1

B(q, r)

(t − a)q−1(b − t)r−1

(b − a)q+r+1
I(a,b)(t);

a < t < b,

0 < q < ∞,
0 < r < ∞

(4)

Where IA(x) is the indicator function: IA(x) = 1, if x ∈ A, zero

otherwise; and B(q, r) =
∫ 1

0
xq−1(1 − x)r−1dx, is the Beta function.

Random deviates at a fixed P (x, y, z) location can be generated by:
(Ang, A. and Tang, W., 1984)

t = a + (b − a)

(
u

(1/q)
1

u
(1/q)
1 + u

(1/r)
2

)
(5)

where u1 and u2 are drawn from independent uniform (0, 1) distributions.

Moments of the Beta distribution are:

µt = E(T ) = a + (b − a)

(
q

q + r

)
∈ (a, b) (6)

σ2
t = Var(T ) = (b − a)2

[
q r

(q + r)2 (q + r + 1)

]
∈ (0, [(b − a)/2]2) (7)

Hence, method of moments estimators for q and r, are:

q =
µ

σ2

[
µ − µ2 − σ2

]
(8)

r =
1 − µ

σ2

[
µ − µ2 − σ2

]
(9)
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where µ and σ2 are respectively, the expectation and variance of the
transformed variable:

T † =
T − a

b − a
∈ (0, 1) (10)

for which:

µ = µ† = E(T †) =
µt − a

b − a
∈ (0, 1) (11)

σ2 = σ†2 = Var(T †) =

(
σt

b − a

)2

∈ (0, 0.52) (12)

A Biased Approximation

No all conceivable values of µ and σ are admissible to yield positive values
of q and r. That is, from equations (8) and (9) , µ and σ have to satisfy:

µ − µ2 − σ2 > 0 (13)

or
σ <

√
µ (1 − µ) (14)

Therefore, the maximum admissible value σmax for σ is:

σmax = max
0<µ<1

{√
µ (1 − µ)

}
= 0.5 (15)

Nevertheless, for practical numerical simulations, the restriction
µ − µ2 − σ2 > 0, can yield values of q or r very close to 0. This can
produce numerical stability problems in drawing outcomes from the beta
distribution, as it can require a very large sample size n to get good moments
estimations by:

Ẽ(T †) = T̄ † =
1

n

n∑

i=1

T †
i (16)

σ̃2(T †) = S†2 =
1

n − 1

∑

i=1

(
T †

i − Ẽ(T †)
)2

(17)
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To overcome the numerical instability problem due to the closeness of q or
r to 0, it will be introduced explicitly some bias by slight shifting q and r
over some fixed threshold δ > 0. That is:

q =
µ

σ2

[
µ − µ2 − σ2

]
≥ δ > 0 (18)

r =
1 − µ

σ2

[
µ − µ2 − σ2

]
≥ δ > 0 (19)

Hence q and r have to satisfy:

q : µ3 − µ2 + µ σ2 + δ σ2 ≤ 0 (20)

r : µ3 − 2µ2 + µ (σ2 + 1) − σ2 (1 + δ) ≥ 0 (21)

Inequalities (20) and (21) are more restrictive than (13) . These equations
are algebraically equivalent, if in equation (21) , µ is replaced by 1−µ′. That
is, it is enough to study the equality boundary behavior in the expression:

g(u, σ)
def
= u3 − u2 + u σ2 + δ σ2 = 0 (22)

Three Practical Approaches to Biasdness

Given the known functions µt = fE(x, y, z) and σ2
t = fV (x, y, z), at a

sampled set:

Ω =
{

P1(x1, y1, z1), P2(x2, y2, z2), . . . , Pn(xn, yn, zn)
}
⊂ ℜ3 (23)

it is required to asses if for each point Pi(xi, yi, zi) i = 1, 2, . . . , n the
parameters µi(Pi) and σ2

i (Pi) satisfies expressions (20) and (21) . If not,
the original parameters µi and σ2

i can be biased to values µ∗
i and σ∗2

i , in
order to satisfy the inequalities. There are three approaches to fulfill the
requirement:
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1.- If major interest on an applied study, is to honor the uncertainty, then
it can be held: σ∗ = σ fixed, and allow some shifting bias µ∗ 6= µ.

2.- If major interest on an applied study, is to honor the exactitude, then
it can be held: µ∗ = µ fixed, and allow some shifting bias σ∗ < σ

3.- If it is desired not to shift very much µ and σ, then a hybrid approach
can allow some shifting bias to both parameters µ∗ 6= µ and σ∗ < σ

Case I: Honoring Uncertainty

The equality bound of equation (22) can be studied using the Cardan’s

formula (Condon, 1967) for the third degree polynomial in u, by identifying:

aox
3 + a1x

2 + a2x + a3 = 0 (24)

ao = 1; a1 = −1; a2 = σ2; a3 = δ σ2; and x = u (25)

By putting:
x = y − a1/(3ao) (26)

equation (24) is transformed into

y3 + ay + b = 0 (27)

If it is set:
D = (b2/4) + (a3/27) (28)

and
cos(3φ) = −(b/2)/

√
−a3/27 (29)

then, in the case where a < 0 and D < 0, the roots are:

y1 = 2
√
−a/3 cos(φ) (30)

y2 = (−y1/2) +
√
−a sin(φ) (31)

y3 = (−y1/2) −
√
−a sin(φ) (32)
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Replacing (25) into (24) , and setting x = y − a1/(3ao):

y3 +

(
σ2 − 1

3

)

︸ ︷︷ ︸
a<0

y +

[
σ2

(
δ +

1

3

)
− 2

27

]

︸ ︷︷ ︸
b

= 0 (33)

Applying now (28) :

D =
1

4

[
σ2

(
δ +

1

3

)
− 2

27

]2

+
1

27

(
σ2 − 1

3

)3

= D(σ, δ) (34)

Values for D < 0, depends upon values on σ and δ. Once fixed the known σ,
a maximum admissible value for δ, is found by setting D = 0 and arranging
equation (34) in terms of a second order polynomial in δ. That is:

(
1

4
σ4

)
δ2 +

(
1

6
σ4 − 1

27
σ2

)
δ +

(
1

36
σ4 − 1

81
σ2 +

1

729
+

1

27

[
σ2 − 1

3

]3
)

= 0 (35)

Therefore:

δ =

(
2

27 σ2
− 1

3

)
± 2

σ2

(
1

3

[
1

3
− σ2

])3/2

(36)

for which only the positive root is admissible, then:

δmax =
2

27 σ2
− 1

3
+

2

σ2

(
1

3

[
1

3
− σ2

])3/2

= δmax(σ) (37)

Hence, given σ, any selection of the threshold value δ in the interval

δ ∈ (0, δmax) ⊂ ℜ+ (38)
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warranties D < 0. Among the three Cardan’s roots y1, y2, and y3, only the
root y2 is admissible.

Now, given µ and σ, plain values of q and r are computed using the moment
methods by equations (8) and (9) . If q, r > δ, then is not necessary to follow
any shifting procedure, since the beta simulated outcomes would be stable.

The following procedure is proposed to enough improve numerical stability
for those cases when q < δ, r < δ, or q, r < δ:

If q < δ and q ≤ r; bias µ to the corresponding cardano root µ∗ = u2

related to y2. The new pair of shifted moments (µ∗, σ) will produce slightly
shifted parameters (q∗ > δ, r∗) to a biased beta distribution, which should
produce more stable outcomes.

Symmetrically, if r < δ and r < q; bias µ to µ∗ = 1 − u2. The new pair of
shifted moments will produce slightly shifted parameters (q∗, r∗ > δ).

After studying some numerical sensibility analysis, the following heuristic
expression yielded reasonable stable outcomes for the biased beta
distribution:

δ = (δmax − ǫ) I[δmax,∞)(λ) + λ I(0,δmax)(λ) (39)

Where ǫ > 0 is a small machine dependent value to ensure a value of
δ slightly smaller than δmax. Values of λ ∼= 1.5, yield reasonable stable
results when drawing biased outcomes for the beta distribution for most
cases. Values of λ ∼= 0+ can yield unsatisfactory very high sample variances

on σ̃2
T , while values of λ > 1.5 can introduce unnecessary higher bias on q

and r.
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Case II: Honoring Exactitude

In this case, the expectation value µ∗ = µ will be held fixed, while the
variance σ∗2 < σ2 will be shifted. The inequalities in the expressions (20)
and (21) can be rewritten as:

q : σ∗2 ≤ µ2(1 − µ)

µ + δ
< σ2 (40)

r : σ∗2 ≤ µ (2µ − µ2 − 1)

µ − δ − 1
< σ2 (41)

If it is defined:

τ2 = τ2(µ, δ)
def
= min

{
µ2(1 − µ)

µ + δ
,
µ (2µ − µ2 − 1)

µ − δ − 1

}
< σ2 (42)

Then, any selection of
σ∗2 ∈ (0, τ2) ⊂ ℜ+ (43)

will warranty numerically stable beta outcomes, since this procedure yield
q∗, r∗ > δ.

Case III: Hybrid Approach

Although the two former cases would improve numerical stability, they can
create for some instances, biases greater than desired. A hybrid approach
would allow slight bias in both values µ∗ and σ∗. The following procedure
is proposed:

1.- Choose a fraction ν ∈ (0, 1) to bias the standard deviation. Then, bias
the standard deviation to:

σ∗ = τ + ν (σ − τ) ∈ (τ, σ) (44)

2.- Bias the expectation µ∗ accordingly to the procedure of case I.
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Geostatistical Application: Properties Summaries

Suppose that for a set of k independent random functions,

{Ti = Ti(x, y, z)}k
i=1 Cov(Ti(Pu); Tj(Pv)) = 0 ∀i 6= j, and ∀Pu, Pv (45)

their expectation and variances functions are known.

µi = µi(x, y, z) (46)

σ2
i = σ2

i (x, y, z) (47)

In practical applications, under some approximated geostatistical
assumptions, (which usually are not compatible with the non stationarity
approach), given a set of sampled points, heuristic conditional means and

variances can be roughly approximated by the use of estimation techniques,
like kriging. (Cressie, 1993). Then, the a-priory physical knowledge of
the boundary functions a(x, y, z) and b(x, y, z) is incorporated to fully
approximate the distribution at a fixed desired location.

Typical summaries properties computations, like means, variances,
quantiles, and probabilities at a fixed point P (x, y, z), does not require
the use of a covariance function for a random function T , but only the
density fT (x,y,z)(t). (Nevertheless, in spite of theoretical incompatibilities,
a stationary variogram had to be fitted to the set of sampled points to
compute the conditional expectations and variances). Then, at a fixed
point P (x, y, z), any function f(•) : ℜk → ℜ,

Tf = Tf (x, y, z) = f
(
T1(x, y, z), T2(x, y, z), . . . , Tk(x, y, z)

)
(48)

can be studied by drawing n outcomes of the random vector:
(
T1(x, y, z), T2(x, y, z), . . . , Tk(x, y, z)

)
(49)

and then, build the random outcome set:

Ω(x, y, z) =
{
Tf i

}n

i=1

to fast compute summaries like expectations, variances, quantiles, and
probabilities.
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Geostatistical Application: Realizations of a Random Function

Given a set of sampled points:

Ωo =
{

t1(x1, y1, z1), t2(x2, y2, z2), . . . , tn(xn, yn, zn)
}

(50)

It is desired to simulate conditional realizations of the random function
T (x, y, z).

A heuristic algorithm, parallel to Sequential Gaussian Simulation (SGS),
(Deutsch, 1998), can be follow to define an approximated Sequential Biased

Beta Simulation (SBBS):

1.- Define a random path that visits each node of a desired grid, out of Ωo.

2.- Draw the first point of the random path, Pα1
(xα1

, yα1
, zα1

)

3.- Using the set Ωo, follow the approximated procedure of the former
section to draw a value Tα1

(xα1
, yα1

, zα1
)

4.- Update the set of the sampled points Ωo, with the set of simulated
points: Ω1 = Ωo ∪ {Tα1

(xα1
, yα1

, zα1
)}

5.- Draw the next location Pα2
of the random path. Using now the set Ω1,

draw a value Tα2
(xα2

, yα2
, zα2

)

6.- Update the set Ω2 = Ω1 ∪ {Tα2
(xα2

, yα2
, zα2

)}

7.- Sequentially repeat the procedure until all locations of the random path
are visited and simulated.

Although in some cases, SGS and SBBS might yield similar results, only the
SBBS takes into account variable user defined physical boundaries a(x, y, z)
and b(x, y, z).
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CONCLUSIONS

A numerically stable, approximated approach to simulate stationary
random functions over variable finite supports, was discussed. The
procedure enables fast computing of properties summaries like means,
variances, quantiles and probabilities at fixed locations, and a heuristic
conditional realizations procedure have been proposed.
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